Meta-learning Recommendation of Default Hyper-parameter Values for SVMs in Classification Tasks

نویسندگان

  • Rafael Gomes Mantovani
  • André Luis Debiaso Rossi
  • Joaquin Vanschoren
  • André Carlos Ponce de Leon Ferreira de Carvalho
چکیده

Machine learning algorithms have been investigated in several scenarios, one of them is the data classification. The predictive performance of the models induced by these algorithms is usually strongly affected by the values used for their hyper-parameters. Different approaches to define these values have been proposed, like the use of default values and optimization techniques. Although default values can result in models with good predictive performance, different implementations of the same machine learning algorithms use different default values, leading to models with clearly different predictive performance for the same dataset. Optimization techniques have been used to search for hyper-parameter values able to maximize the predictive performance of induced models for a given dataset, but with the drawback of a high computational cost. A compromise is to use an optimization technique to search for values that are suitable for a wide spectrum of datasets. This paper investigates the use of meta-learning to recommend default values for the induction of Support Vector Machine models for a new classification dataset. We compare the default values suggested by the Weka and LibSVM tools with default values optimized by meta-heuristics on a large range of datasets. This study covers only classification task, but we believe that similar ideas could be used in other related tasks. According to the experimental results, meta-models can accurately predict whether tool suggested or optimized default values should be used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

A Hyper-Solution Framework for SVM Classification: Application for Predicting Destabilizations in Chronic Heart Failure Patients

Support Vector Machines (SVMs) represent a powerful learning paradigm able to provide accurate and reliable decision functions in several application fields. In particular, they are really attractive for application in medical domain, where often a lack of knowledge exists. Kernel trick, on which SVMs are based, allows to map non-linearly separable data into potentially linearly separable one, ...

متن کامل

Meta-learning Approach for Automatic Parameter Tuning: A case of study with educational datasets

This paper proposes to the use of a meta-learning approach for automatic parameter tuning of a well-known decision tree algorithm by using past information about algorithm executions. Fourteen educational datasets were analysed using various combinations of parameter values to examine the effects of the parameter values on accuracy classification. Then, the new metadataset was used to predict t...

متن کامل

Continuous Hyper-parameter Learning for Support Vector Machines

In this paper, we address the problem of determining optimal hyper-parameters for support vector machines (SVMs). The standard way for solving the model selection problem is to use grid search. Grid search constitutes an exhaustive search over a pre-defined discretized set of possible parameter values and evaluating the cross-validation error until the best is found. We developed a bi-level opt...

متن کامل

Combining meta-learning and search techniques to select parameters for support vector machines

Support Vector Machines (SVMs) have achieved very good performance on different learning problems. However, the success of SVMs depends on the adequate choice of the values of a number of parameters, (e.g., the kernel and regularization parameters). In the current work, we propose the combination of Meta-Learning and Search algorithms to deal with the problem of SVM parameter selection. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015